Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Total Environ ; 928: 172305, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38593872

RESUMO

Thiram is a member of the dithiocarbamate family and is widely used in agriculture, especially in low-income countries. Its residues lead to various diseases, among which tibial dyschondroplasia (TD) in broiler chickens is the most common. Recent studies have also demonstrated that thiram residues may harm human health. Our previous study showed that the activity of the mTOR (mammalian target of rapamycin) signaling pathway has changed after thiram exposure. In the current study, we investigated the effect of autophagy via the mTOR signaling pathway after thiram exposure in vitro and in vivo. Our results showed that thiram inhibited the protein expression of mTOR signaling pathway-related genes such as p-4EBP1 and p-S6K1. The analysis showed a significant increase in the expression of key autophagy-related proteins, including LC3, ULK1, ATG5, and Beclin1. Further investigation proved that the effects of thiram were mediated through the downregulation of mTOR. The mTOR agonist MHY-1485 reverse the upregulation of autophagy caused by thiram in vitro. Moreover, our experiment using knockdown of TSC1 resulted in chondrocytes expressing lower levels of autophagy. In conclusion, our results demonstrate that thiram promotes autophagy via the mTOR signaling pathway in chondrogenesis, providing a potential pharmacological target for the prevention of TD.

2.
Ecotoxicol Environ Saf ; 275: 116260, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564867

RESUMO

Thiram, a commonly used agricultural insecticide and fungicide, has been found to cause tibial dyschondroplasia (TD) in broilers, leading to substantial economic losses in the poultry industry. In this study, we aimed to investigate the mechanism of action of leucine in mitigating thiram-induced TD and leucine effects on gut microbial diversity. Broiler chickens were randomly divided into five equal groups: control group (standard diet), thiram-induced group (thiram 80 mg/kg from day 3 to day 7), and different concentrations of leucine groups (0.3%, 0.6%, 0.9% leucine from day 8 to day 18). Performance indicator analysis and tibial parameter analysis showed that leucine positively affected thiram-induced TD broilers. Additionally, mRNA expressions and protein levels of HIF-1α/VEGFA and Ihh/PTHrP genes were determined via quantitative real-time polymerase chain reaction and western blot. The results showed that leucine recovered lameness disorder by downregulating the expression of HIF-1α, VEGFA, and PTHrP while upregulating the expression of Ihh. Moreover, the 16 S rRNA sequencing revealed that the leucine group demonstrated a decrease in the abundance of harmful bacteria compared to the TD group, with an enrichment of beneficial bacteria responsible for producing short-chain fatty acids, including Alistipes, Paludicola, CHKCI002, Lactobacillus, and Erysipelatoclostridium. In summary, the current study suggests that leucine could improve the symptoms of thiram-induced TD and maintain gut microbiota homeostasis.


Assuntos
Microbioma Gastrointestinal , Osteocondrodisplasias , Animais , Tiram/toxicidade , Osteocondrodisplasias/induzido quimicamente , Osteocondrodisplasias/genética , Osteocondrodisplasias/veterinária , Galinhas , Leucina , Proteína Relacionada ao Hormônio Paratireóideo , Disbiose
3.
Appl Microbiol Biotechnol ; 108(1): 139, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38229401

RESUMO

Gut microorganism (GM) is an integral component of the host microbiome and health system. Abuse of antibiotics disrupts the equilibrium of the microbiome, affecting environmental pathogens and host-associated bacteria alike. However, relatively little research on Bacillus licheniformis alleviates the adverse effects of antibiotics. To test the effect of B. licheniformis as a probiotic supplement against the effects of antibiotics, cefalexin was applied, and the recovery from cefalexin-induced jejunal community disorder and intestinal barrier damage was investigated by pathology, real-time PCR (RT-PCR), and high-throughput sequencing (HTS). The result showed that A group (antibiotic treatment) significantly reduced body weight and decreased the length of jejunal intestinal villi and the villi to crypt (V/C) value, which also caused structural damage to the jejunal mucosa. Meanwhile, antibiotic treatment suppressed the mRNA expression of tight junction proteins ZO-1, claudin, occludin, and Ki67 and elevated MUC2 expression more than the other Groups (P < 0.05 and P < 0.01). However, T group (B. licheniformis supplements after antibiotic treatment) restored the expression of the above genes, and there was no statistically significant difference compared to the control group (P > 0.05). Moreover, the antibiotic treatment increased the relative abundance of 4 bacterial phyla affiliated with 16 bacterial genera in the jejunum community, including the dominant Firmicutes, Proteobacteria, and Cyanobacteria in the jejunum. B. licheniformis supplements after antibiotic treatment reduced the relative abundance of Bacteroidetes and Proteobacteria and increased the relative abundance of Firmicutes, Epsilonbacteraeota, Lactobacillus, and Candidatus Stoquefichus. This study uses mimic real-world exposure scenarios by considering the concentration and duration of exposure relevant to environmental antibiotic contamination levels. We described the post-antibiotic treatment with B. licheniformis could restore intestinal microbiome disorders and repair the intestinal barrier. KEY POINTS: • B. licheniformis post-antibiotics restore gut balance, repair barrier, and aid health • Antibiotics harm the gut barrier, alter structure, and raise disease risk • Long-term antibiotics affect the gut and increase disease susceptibility.


Assuntos
Bacillus licheniformis , Enteropatias , Probióticos , Animais , Camundongos , Bovinos , Antibacterianos/farmacologia , Suplementos Nutricionais , Probióticos/farmacologia , Enteropatias/microbiologia , Firmicutes/genética , Cefalexina
4.
Int J Biol Macromol ; 254(Pt 2): 127808, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37926310

RESUMO

Gut microbiota and their metabolic processes depend on the intricate interplay of gut microbiota and their metabolic processes. Bacillus licheniformis, a beneficial food supplement, has shown promising effects on stabilizing gut microbiota and metabolites. However, the precise mechanisms underlying these effects remain elusive. In this study, we investigated the impact of polysaccharide-producing B. licheniformis as a dietary supplement on the gut microbiome and metabolites through a combination of scanning electron microscopy (SEM), histological analysis, high-throughput sequencing (HTS), and metabolomics. Our findings revealed that the B. licheniformis-treated group exhibited significantly increased jejunal goblet cells. Moreover, gut microbial diversity was lower in the treatment group as compared to the control, accompanied by noteworthy shifts in the abundance of specific bacterial taxa. Enrichment of Firmicutes, Lachnospiraceae, and Clostridiales_bacterium contrasted with reduced levels of Campylobacterota, Proteobacteria, Parasutterella, and Helicobacter. Notably, the treatment group showed significant weight gain after 33 days, emphasizing the polysaccharide's impact on host metabolism. Delving into gut metabolomics, we discovered significant alterations in metabolites. Nine metabolites, including olprinone, pyruvic acid, and 2-methyl-3-oxopropanoate, were upregulated, while eleven, including defoslimod and voclosporin were down-regulated, shedding light on phenylpropanoid biosynthesis, tricarboxylic acid cycle (TCA cycle), and the glucagon signaling pathway. This comprehensive multi-omics analysis offers compelling insights into the potential of B. licheniformis as a dietary polysaccharide supplement for gut health and host metabolism, promising significant implications for gut-related issues.


Assuntos
Bacillus licheniformis , Microbioma Gastrointestinal , Animais , Bovinos , Multiômica , Tibet , Metabolômica , Suplementos Nutricionais , Bactérias , Polissacarídeos/farmacologia , RNA Ribossômico 16S
5.
MethodsX ; 11: 102450, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38023301

RESUMO

The mechanical-double enzyme method was used in the current study to isolate and culture primary chondrocytes from the chicken growth plates. The feasibility and practicability of the approach were determined by using trypan blue staining, toluidine blue staining, PCR, and flow cytometry. The immunofluorescence assay was also used to effectively identify chondrocytes, demonstrating the expression of chondrocyte-specific secreted products (Col-II and Aggrecan). The exterior morphology of chondrocytes was studied at several stages, revealing significant changes in cell shape with each generation. Notably, compared to earlier approaches, the mechanical-double enzyme strategy revealed enhanced cell adhesion and much reduced apoptosis rates. The findings indicate that this novel method has great potential for efficient primary chondrocytes culture, providing important insight into chondrocyte ba research and future applications in cartilage tissue engineering. The following technical points are included in this method:•Isolation and culturing primary chondrocytes by a mechanical-double enzyme approach.•The evaluation of cell adhesion and apoptosis of mechanical double enzyme approach as compared to previous approaches.•The confirmation of chondrocyte-specific secreted products' expression via toluidine blue staining, PCR, and immunofluorescence assays.

6.
J Hazard Mater ; 444(Pt A): 130368, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36423455

RESUMO

Pesticide thiram is widely used in agriculture and has been demonstrated to cause tibial dyschondroplasia (TD) in birds. However, the underlying mechanism remains unclear. This work used multi-omics analysis to evaluate the molecular pathways of TD in broilers that were exposed to low level of thiram. Integrative analysis of transcriptomic, proteomic, and metabolomic revealed thiram activity in enhancing pathological ECM remodeling via attenuating the glycolysis pathway and activating the hexosamine and glucuronic acid pathways. Intriguingly, we found hyperglycemia as a crucial factor for ECM overproduction, which resulted in the development of TD. We further demonstrated that high glucose levels are caused by islet secretion dysfunction in thiram-treated broilers. A combination of factors, including lipid disorder, low-grade inflammation, and gut flora disturbance, might contribute to the dysregulation of insulin secretion. The current work revealed the underlying toxicological mechanisms of thiram-induced tibial dyschondroplasia through blood glucose disorder via the gut-pancreas axis in chickens for the first time, which makes it easier to figure out the health risks of pesticides for worldwide policy decisions.


Assuntos
Hiperglicemia , Osteocondrodisplasias , Animais , Tiram/toxicidade , Osteocondrodisplasias/induzido quimicamente , Osteocondrodisplasias/genética , Galinhas , Proteômica , Pâncreas
7.
Ecotoxicol Environ Saf ; 245: 114134, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36183428

RESUMO

Thiram is a dithiocarbamate pesticide widely used in agriculture as a fungicide for storing grains to prevent fungal diseases. However, its residues have threatened the safety of human beings and the stability of the ecosystem by causing different disease conditions, e.g., tibial dyschondroplasia (TD), which results in a substantial economic loss for the poultry industry. So, the research on TD has a great concern for the industry and the overall GDP of a country. In current study, we investigated whether different concentrations (300, 500, and 700 mg/kg) of sodium butyrate alleviated TD induced under acute thiram exposure by regulating osteogenic gene expression, promoting chondrocyte differentiation, and altering the gut microbial community. According to the findings, sodium butyrate restored clinical symptoms in broilers, improved growth performance, bone density, angiogenesis, and chondrocyte morphology and arrangement. It could activate the signal transduction of the Wnt/ß-catenin pathway, regulate the expression of GSK-3ß and ß-catenin, and further promote the production of osteogenic transcription factors Runx2 and OPN for restoration of lameness. In addition, the 16S rRNA sequencing revealed a significantly different community composition among the groups. The TD group increased the abundance of the harmful bacteria Proteobacteria, Subdoligranulum, and Erysipelatoclostridium. The sodium butyrate enriched many beneficial bacteria, such as Bacteroidetes, Verrucomicrobia, Faecalibacterium, Barnesiella, Rikenella, and Butyricicoccus, etc., especially at the concentration of 500 mg/kg. The mentioned concentration significantly limited the intestinal disorders under thiram exposure, and restored bone metabolism.


Assuntos
Fungicidas Industriais , Microbioma Gastrointestinal , Osteocondrodisplasias , Praguicidas , Doenças das Aves Domésticas , Animais , Ácido Butírico/toxicidade , Galinhas/genética , Subunidade alfa 1 de Fator de Ligação ao Core , Disbiose , Ecossistema , Fungicidas Industriais/toxicidade , Glicogênio Sintase Quinase 3 beta , Humanos , Osteocondrodisplasias/induzido quimicamente , Osteocondrodisplasias/genética , Osteocondrodisplasias/metabolismo , Praguicidas/toxicidade , Doenças das Aves Domésticas/induzido quimicamente , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/metabolismo , RNA Ribossômico 16S/genética , Tiram/toxicidade , beta Catenina
8.
Front Vet Sci ; 9: 824785, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35647106

RESUMO

The present study determined the complete mitochondrial DNA (mt DNA) sequence of Fasciola intermediate (isolated from yaks) based on gene content and genome organization. According to our findings, the genome of Fasciola intermediate was 13,960 bp in length, containing 2 ribosomal RNA (rRNA) genes, 12 protein-coding genes (PCGs), and 22 transfer RNA (tRNA) genes. The A+T content of genomes was 63.19%, with A (15.17%), C (9.31%), G (27.51%), and T as the nucleotide composition (48.02%). Meanwhile, the results showed negative AT-skew (-0.52) and positive GC-skew (0.494). The AT bias significantly affected both the codon usage pattern and amino acid composition of proteins. There were 2715 codons in all 12 protein-coding genes, excluding termination codons. Leu (16.72%) was the most often used amino acid, followed by Val (12.74%), Phe (10.90%), Ser (10.09%), and Gly (8.39%). A phylogenetic tree was built using Maximum-Likelihood (ML) through MEGA 11.0 software. The entire mt DNA sequence of Fasciola intermediate gave more genetic markers for investigating Trematoda population genetics, systematics, and phylogeography. Hence, for the first time, our study confirmed that yaks on the Qinghai-Tibet plateau have the infestation of Fasciola intermediate parasite.

9.
Front Vet Sci ; 9: 849500, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35400089

RESUMO

Cystic echinococcosis (CE) is a livestock disease caused by a parasite known as Echinococcus granulosus. It is one of the primary cause for illness and poverty especially for herders on the Qinghai-Tibet plateau, China. Meanwhile, the Qinghai-Tibet plateau has been a key area for echinococcosis control in China. Here in current study, we determined the seroprevalence of E. granulosus in ruminants on this region. A total of 2,730 serum samples (1,638 samples from yaks and 1,092 samples from sheep) were collected on the plateau during the period of 2017. The samples were assayed for E. granulosus antibodies by commercial enzyme-linked immunosorbent assay kits. Our results exhibited a prevalence percentage of 52.2% in Tibetan yaks and 38.2% in Tibetan sheep. Moreover, there was more chance of being infected with E. granulosus infection in old animals due to more exposure to contaminated sources of infection. However, no significant difference was observed. Furthermore, we observed that the rainfall and presence of several lakes has increased the risk of CE infection in yaks and sheep in the Qinghai, Qinglong, and Baingoin areas. Hence, with this investigation, it was possible to determine the frequency and distribution of CE in yaks and Tibetan sheep on the Qinghai-Tibet plateau, that laying the groundwork for its prevention and management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...